

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Analog Circuits (18EC0407)

Course & Branch: B.Tech - ECE

Year & Sem: II-B.Tech & II-Sem

Regulation: R18

UNIT –I

SMALL SIGNAL HIGH FREQUENCY TRANSISTOR AMPLIFIER ANALYSIS AND MULTISTAGE AMPLIFIERS

I. Two Mark Questions:

1. Why h-parameter model is not suitable for high frequencies?	[L1][CO1][2M]
2. Draw the Hybrid π Common Emitter transistor model for high frequencies.	[L1][C01][2M]
3. Define the cutoff frequency f_{α} and write down its expression.	[L2][C01][2M]
4. What is cutoff frequency f_{β} and write down its expression.	[L2][C01][2M]
5. Define unity gain frequency f_{T} .	[L1][C01][2M]
6. Classify the different types of coupling.	[L1][C01][2M]
7. Mention the applications of transformer coupling technique.	[L1][C01][2M]
8. What is cascode amplifier?	[L1][C01][2M]
9. Mention the advantages of Darlington pair amplifier.	[L1][C01][2M]
10. If four identical amplifiers are cascaded each having $f_L = 100$ Hz, determine the	
Overall lower 3dB frequency f_L . Assume non – interacting stages.	[L3][CO1][2M]
II. Part – B Ouestions:	
1.a) Draw the Hybrid-pi model and explain the significance of each and every	
component in it.	[L2][CO1][5M]
b) Derive the expression for Hybrid- π capacitance of CE transistor at high frequency.	[L2][C01][5M]
2. Derive the expression for the hybrid π parameters g_m , $g_{b'e}$, $g_{b'c}$, $r_{bb'}$ and g_{ce} .	[L2][C01][10M]
3. a) Describe the variation of hybrid parameters upon collector current, V_{CE} and	
Temperature.	[L2][CO1][5M]
b) At $I_c = 1$ mA and $V_{CE}=10V$, a certain transistor data shows $C_c = C_{b'c} = 3$ pF, $h_{fe} = 200$ and	1
$w_T = -500 \text{ M rad/sec. Calculate } g_m, r_{b'e}, C_e = C_{b'e} \text{ and } w_{\beta}.$	[L3][CO1][5M]
4. With the help of necessary circuit diagrams and approximations obtain the expression for C	CE
short circuit current gain and derive the relation between f_{β} and f_{T} .	[L2][CO1][10M]
5. Obtain the expression for Current gain with resistive load and discuss the variation of frequ	iency
response with R _L .	[L2][CO1][10M]
6. a) Short circuit CE current gain of a transistor is 25 at a frequency of 2MHz. If $f_{\beta} = 200$ KH	Z
Calculate (i) f_T (ii) h_{fe} (iii) Find $ A_i $ at frequency of 10MHz and 100MHz.	[L3][CO1][5M]
b) A BJT has $g_m = 38$ mhos, $r_{b'e} = 5.9k\Omega$, $h_{ie} = 6k\Omega$, $r_{bb'} = 100\Omega$, $C_{b'c} = 12pF$, $C_{b'e} = 63pF$ at $C_{$	and
$h_{fe} = 224$ at 1 KHz. Calculate α , β cutoff frequencies and f_T .	[L3][CO1][5M]
7. Describe different methods used for coupling multistage amplifiers with their frequency	
response.	[L2][CO1][10M]
8. Draw the block diagram of n-stage cascaded amplifier and analyze its various parameters.	[L4][CO1][10M]
9. With neat diagram explain cascode amplifier and derive the overall voltage gain, overall in	put resistance,
Overall current gain and output resistance of cascode amplifier.	[L2][CO1][10M]
10. a) What is Darlington Connection?	[L1][CO1][2M]
b) With diagram, derive the expression for current gain and input resistance of Darlington	l
amplifier.	[L2][CO1][8M]

11. For the circuit shown in Fig. Calculate R_i , A_i , A_V and R_o if the h – parameters are $h_{ie}=1.1k\Omega$, $h_{fe}=50$, $h_{oe}=25\mu A/V$ and $h_{re}=2.5 \times 10^{-4}$. [L3][CO1][10M]

- 12. a) Explain the effect of cascading on bandwidth of multistage amplifier. [L2][C01][6M]
 - b) If the overall lower and higher cutoff frequencies of a two identical amplifier cascade are
 600 Hz and 18 kHz respectively, compute the values of individual cutoff frequencies of both
 the amplifier stages.

UNIT –II

FEEDBACK AMPLIFIERS AND OSCILLATORS

I. Two Mark Questions:

1. Define feedback.	[L1][CO2][2M]
2. What is positive feedback and negative feedback?	[L1][CO2][2M]
3. Classify the various types of basic amplifiers.	[L2][CO2][2M]
4. Compare the performance of various feedback amplifiers.	[L2][CO2][2M]
5. An amplifier has an open loop gain of 1000 and feedback ratio of 0.04. If the open loop ga	in
Changes by 10% due to temperature, find the percentage change in gain of the amplifier	
with feedback.	[L3][CO2][2M]
6. State Barkhausen criterion for oscillation.	[L1][CO2][2M]
7. Mention the different types of oscillators.	[L2][CO2][2M]
8. What are the applications of oscillators?	[L1][CO2][2M]
9. Mention the disadvantages of RC Phase shift oscillator.	[L1][CO2][2M]
10. In a Colpitts oscillator $L = 40mH$, $C_1 = 100pF$ and $C_2 = 500pF$. Determine its frequency	
of oscillation.	[L3][CO2][2M]
II. Part – B Questions:	
1.a) Explain the concept of negative feedback with the help of a neat block diagram.	[L2][CO2][6M]
b) With neat diagram, discuss voltage amplifier and current amplifier.	[L2][CO2][4M]
2. Describe the characteristics of negative feedback amplifiers.	[L2][CO2][10M]
3. a) Derive the expressions of input and output resistances for Voltage Series FBA.	[L2][CO2][6M]
b) A voltage series negative feedback amplifier has a voltage gain without feedback of A =	= 500,
input resistance $R_i = 3k\Omega$, output resistance $R_0 = 20k\Omega$ and feedback ratio $\beta = 0.01$. Calc	culate
the voltage gain A_f , input resistance R_{if} , and output resistance R_{of} of the amplifier with	
feedback.	[L3][CO2][4M]
4. a) Determine the input and output resistances of Current Shunt feedback amplifier.	[L2][CO2][6M]
b) An amplifier has a voltage gain of 400, $f_1 = 50$ Hz, $f_2 = 200$ kHz and a distortion of 10%	
without feedback. Determine the amplifier voltage gain, f_{1f} , f_{2f} and D_f when a negative	
feedback is applied with feedback ratio of 0.01.	[L3][CO2][4M]
5. a) Derive the expressions of input and output resistances for Voltage Shunt FBA.	[L2][CO2][5M]
b) Determine the input and output resistances of Current Series feedback amplifier.	[L2][CO2][5M]

6. a) Explain the analysis of negative feedback amplifier.	[L2][CO2][6M]
b) An amplifier has voltage gain with feedback of 100. If the gain without feedback	ack changes
by 20% and the gain with feedback should not vary more than 2%, determine	the value of
open loop gain A and feedback ratio β .	[L3][CO2][4M]
7. With the help of a neat circuit diagram, discuss RC phase shift oscillator using B	JT and also
derive the expression for its frequency of oscillation.	[L2][CO2][10M]
8. Describe the working principle of Wein bridge oscillator and derive the expression	on for
frequency of oscillations.	[L2][CO2][10M]
9. a) Explain the general analysis of an LC Oscillator.	[L2][CO2][8M]
b) In as RC phase shift oscillator, if $R_1 = R_2 = R_3 = 200k\Omega$ and $C_1 = C_2 = C_3 = 100$	00pF. Find the
frequency of oscillation.	[L3][CO2][2M]
10. a) With the help of a neat circuit diagram, discuss Hartley oscillator using BJT	and also
derive the expression for its frequency of oscillation.	[L2][CO2][8M]
b) In the Hartley oscillator, $L_2 = 0.4$ mH and $C = 0.004\mu$ F. If the frequency of osc	cillator is 120kHz,
find the value of L_1 . Neglect the mutual inductance.	[L3][CO2][2M]
11. a) Describe the working principle of Colpitts oscillator and derive the expression	on for
frequency of oscillations.	[L2][CO2][8M]
b) In the Colpitts oscillator, $C_1 = 0.2 \mu F$ and $C_2 = 0.02 \mu F$. If the frequency of os	scillation
is 10kHz, find the value of inductor.	[L3][CO2][2M]
12. Write notes on the following:	
a) Crystal oscillators	[L1][CO2][5M]
b) Frequency and amplitude stability of oscillators.	[L1][CO2][5M]

UNIT III POWER AMPLIFIERS & TUNED AMPLIFIERS

I. Two Mark Questions:

1. Classify the different types of power amplifiers.	[L1][CO3][2M]
2. Compare the various types of power amplifiers.	[L1][CO3][2M]
3. Mention the disadvantage of series fed direct coupled class A power amplifier.	[L2][CO3][2M]
4. What are the differences between Push Pull and Complementary symmetry class B	
power amplifier?	[L1][CO3][2M]
5. What is crossover distortion?	[L1][CO3][2M]
6. What is a tuned amplifier?	[L1][CO3][2M]
7. Mention the different types of tuned amplifiers.	[L1][CO3][2M]
8. In a tuned amplifier $L = 100\mu$ H and $C = 100$ pF. Determine its resonant frequency.	[L3][CO3][2M]
9. Give the applications of tuned amplifiers.	[L1][CO3][2M]
10. What is stagger tuned amplifier?	[L1][CO3][2M]

II. Part – B Questions:

- 1.a) With neat diagram explain Series fed, Directly coupled Class A Power Amplifier and derive its maximum efficiency. [L2][CO3][5M]
 - b) A series fed Class A amplifier shown if the Fig, operates from dc source and applied sinusoidal input signal generates peak base current 9mA. Calculate : (i) Quiescent current I_{CQ}, (ii) Quiescent voltage V_{CEQ}, (iii) DC input power P_{DC}, (iv) AC output power P_{AC} and (v) Efficiency. [L3][CO3][5M]

2. In total point of a labor of the constant of the total point of a labor of the total point of the labor of the total point of the labor of the local point point point of the loc	2	The loudspeaker of 8O is connected to the secondary of the output transformer of a class	А	
collector supply voltage is 10V. If ac power delivered to the loudspeaker is 0.48W, assuming ideal transformer, calculate (i) AC power developed across primary, (ii) RMS value of load voltage, (iii) RMS value of primary voltage, (iv) RMS value of load current, (v) RMS value of primary current, (vi) DC power input, (vii) efficiency and (viii) power dissipation. [L3][CO3][10M] 3. a) Discuss with diagram, Transformer coupled Class A Power Amplifier and derive its Maximum efficiency. [L1][CO3][5M] b) A Class B push pull amplifier drives a load of 16 Ω , connected to the secondary of ideal transformer. The V _{cc} is 25V. If number of turns on primary is 200 and secondary is 50. Calculate maximum power output, DC power input and efficiency. [L3][CO3][5M] 4. With neat diagram explain the working principle of Push Pull Class B Power Amplifier and derive its maximum efficiency. [L2][CO3][10M] 5. a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram. [L2][CO3][5M] 6. Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. [L2][CO3][10M] 7. Discuss Double Tuned Amplifier uses a transistor with an output resistance of 50 K Ω , output capacitance of 15 pF and internal resistance of next stage is 20 k Ω . The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2 Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such	2.	Amplifier The quiescent collector current is 140mA. The turns ratio of transformer is 3:1. The		
ideal transformer, calculate (i) AC power developed across primary, (ii) RMS value of load voltage, (iii) RMS value of primary voltage, (iv) RMS value of load current, (v) RMS value of primary current, (vi) DC power input, (vii) efficiency and (viii) power dissipation. [L3][CO3][10M] 3. a) Discuss with diagram, Transformer coupled Class A Power Amplifier and derive its Maximum efficiency. [L1][CO3][5M] b) A Class B push pull amplifier drives a load of 16 Ω , connected to the secondary of ideal transformer. The V _{cc} is 25V. If number of turns on primary is 200 and secondary is 50. Calculate maximum power output, DC power input and efficiency. [L3][CO3][5M] 4. With neat diagram explain the working principle of Push Pull Class B Power Amplifier and derive its maximum efficiency. [L2][CO3][10M] 5. a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram. [L2][CO3][5M] b) Write notes on crossover distortion in class B power amplifier. [L1][CO3][5M] 6. Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. [L2][CO3][10M] 7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its bandwidth. [L2][CO3][10M] 8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 K Ω , output capacitance of 15 pF and internal resistance of next stage is 20 k Ω . The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2 Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][5M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such		collector supply voltage is 10V. If ac power delivered to the loudspeaker is 0.48W assum	ing	
(iii) RMS value of primary voltage, (iv) RMS value of load voltage, (iii) RMS value of primary current, (vi) DC power input, (vii) efficiency and (viii) power dissipation. [L3][CO3][10M] 3. a) Discuss with diagram, Transformer coupled Class A Power Amplifier and derive its Maximum efficiency. [L1][CO3][5M] b) A Class B push pull amplifier drives a load of 16 Ω , connected to the secondary of ideal transformer. The V _{cc} is 25V. If number of turns on primary is 200 and secondary is 50. Calculate maximum power output, DC power input and efficiency. [L3][CO3][5M] 4. With neat diagram explain the working principle of Push Pull Class B Power Amplifier and derive its maximum efficiency. [L2][CO3][10M] 5. a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram. [L2][CO3][5M] b) Write notes on crossover distortion in class B power amplifier. [L1][CO3][5M] 6. Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. [L2][CO3][10M] 7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its bandwidth. [L2][CO3][10M] 8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 K Ω , output capacitance of 15 pF and internal resistance of next stage is 20 k Ω . The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2 Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such		ideal transformer, calculate (i) AC power developed across primary (ii) RMS value of los	ad voltage	
 (ii) KMS value of primary voltage, (iv) KMS value of particular, (iv) KMS value of primary current, (vi) DC power input, (vii) efficiency and (viii) power dissipation. (L3][CO3][10M] a) Discuss with diagram, Transformer coupled Class A Power Amplifier and derive its Maximum efficiency. (L1][CO3][5M] b) A Class B push pull amplifier drives a load of 16Ω, connected to the secondary of ideal transformer. The V_{cc} is 25V. If number of turns on primary is 200 and secondary is 50. Calculate maximum power output, DC power input and efficiency. (L3][CO3][5M] 4. With neat diagram explain the working principle of Push Pull Class B Power Amplifier and derive its maximum efficiency. (L2][CO3][10M] 5. a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram. (L1][CO3][5M] b) Write notes on crossover distortion in class B power amplifier. (L1][CO3][5M] c) Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. (L2][CO3][10M] 7. Discuss Double Tuned Amplifier uses a transistor with an output resistance of 50 KΩ, output capacitance of 15 pF and internal resistance of next stage is 20 kΩ. The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth. (L3][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. (L3][CO3][5M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 		(iii) DMS value of mimory voltage (iv) DMS value of load summent (v) DMS value of mimory		
(L2)[CO3][10M]3. a) Discuss with diagram, Transformer coupled Class A Power Amplifier and derive its Maximum efficiency.[L1][CO3][5M]b) A Class B push pull amplifier drives a load of 16Ω, connected to the secondary of ideal transformer. The Vcc is 25V. If number of turns on primary is 200 and secondary is 50. Calculate maximum power output, DC power input and efficiency.[L3][CO3][5M]4. With neat diagram explain the working principle of Push Pull Class B Power Amplifier and derive its maximum efficiency.[L3][CO3][5M]5. a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram. b) Write notes on crossover distortion in class B power amplifier.[L2][CO3][10M]6. Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. C12][CO3][10M][L2][CO3][10M]7. Discuss Double Tuned Amplifier uses a transistor with an output resistance of 50 KΩ, output capacitance of 15 pF and internal resistance of next stage is 20 kΩ. The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth. (L2][CO3][5M][L2][CO3][5M]9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. (L2][CO3][6M][L2][CO3][6M]9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. (L2][CO3][6M][L2][CO3][6M]		(iii) KWS value of primary voltage, (iv) KWS value of foad current, (v) KWS value of primary outget, (vii) DC power input (viii) efficiency and (viii) power dissipation		
 S. a) Discuss with diagram, transformer coupled Class A Power Amplifier and derive its Maximum efficiency. b) A Class B push pull amplifier drives a load of 16Ω, connected to the secondary of ideal transformer. The V_{cc} is 25V. If number of turns on primary is 200 and secondary is 50. Calculate maximum power output, DC power input and efficiency. 4. With neat diagram explain the working principle of Push Pull Class B Power Amplifier and derive its maximum efficiency. 5. a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram. b) Write notes on crossover distortion in class B power amplifier. c) Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. c) Discuss Double Tuned Amplifier with neat diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. d) Discuss Double Tuned Amplifier uses a transistor with an output resistance of 50 KΩ, output capacitance of 15 pF and internal resistance of next stage is 20 kΩ. The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth. d) Explain the effect of cascading single tuned amplifiers on bandwidth. d) With circuit diagram, describe the stagger tuning operation. Give necessary graph. d) With Class Class B and and the section of the bandwidth of the circuit diagram. 	2	a) Discuss with discreme Transformer coupled Class A Dewer Amplifier and derive its		
 b) A Class B push pull amplifier drives a load of 16Ω, connected to the secondary of ideal transformer. The V_{cc} is 25V. If number of turns on primary is 200 and secondary is 50. Calculate maximum power output, DC power input and efficiency. [L3][CO3][5M] 4. With neat diagram explain the working principle of Push Pull Class B Power Amplifier and derive its maximum efficiency. [L2][CO3][10M] 5. a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram. [L2][CO3][5M] b) Write notes on crossover distortion in class B power amplifier. [L1][CO3][5M] c) Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. [L2][CO3][10M] 7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its centre frequency, Quality factor, Voltage is 20 kΩ, output capacitance of 15 pF and internal resistance of next stage is 20 kΩ. The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth of the circuit. [L3][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] c) a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 	э.	a) Discuss with diagram, Transformer coupled Class A Power Amplifier and derive its	II 11[CO2][5][1	
 b) A Class B push pull amplifier drives a load of 16Ω, connected to the secondary of ideal transformer. The V_{cc} is 25V. If number of turns on primary is 200 and secondary is 50. Calculate maximum power output, DC power input and efficiency. [L3][CO3][5M] 4. With neat diagram explain the working principle of Push Pull Class B Power Amplifier and derive its maximum efficiency. [L2][CO3][10M] 5. a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram. [L2][CO3][5M] b) Write notes on crossover distortion in class B power amplifier. [L1][CO3][5M] c) Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. [L2][CO3][10M] 7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its bandwidth. [L2][CO3][10M] 8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 KΩ, output capacitance of 15 pF and internal resistance of next stage is 20 kΩ. The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth. [L2][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] c) a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][5M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 		$\frac{1}{1} = \frac{1}{1} = \frac{1}$		
transformer. The V _{cc} is 25V. If number of turns on primary is 200 and secondary is 50. Calculate maximum power output, DC power input and efficiency. [L3][CO3][5M] 4. With neat diagram explain the working principle of Push Pull Class B Power Amplifier and derive its maximum efficiency. [L2][CO3][10M] 5. a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram. [L2][CO3][5M] b) Write notes on crossover distortion in class B power amplifier. [L1][CO3][5M] 6. Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. [L2][CO3][10M] 7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its bandwidth. [L2][CO3][10M] 8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 K Ω , output capacitance of 15 pF and internal resistance of next stage is 20 k Ω . The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2 Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth. [L2][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such		b) A Class B push pull amplifier drives a load of 1622, connected to the secondary of idea	1	
Calculate maximum power output, DC power input and efficiency.[L3][CO3][5M]4. With neat diagram explain the working principle of Push Pull Class B Power Amplifier and derive its maximum efficiency.[L2][CO3][10M]5. a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram. b) Write notes on crossover distortion in class B power amplifier.[L2][CO3][5M]6. Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth.[L2][CO3][10M]7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its bandwidth.[L2][CO3][10M]8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 K Ω , output capacitance of 15 pF and internal resistance of next stage is 20 k Ω . The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2 Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth of the circuit.[L3][CO3][5M]9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such[L2][CO3][6M]		transformer. The V_{cc} is 25V. If number of turns on primary is 200 and secondary is 50.		
 4. With neat diagram explain the working principle of Push Pull Class B Power Amplifier and derive its maximum efficiency. 5. a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram. b) Write notes on crossover distortion in class B power amplifier. c) Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. 7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its bandwidth. 8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 KΩ, output capacitance of 15 pF and internal resistance of next stage is 20 kΩ. The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth. b) Explain the effect of cascading single tuned amplifiers on bandwidth. c) Explain the effect of cascading single tuned amplifiers on bandwidth. d) With circuit diagram, describe the stagger tuning operation. Give necessary graph. d) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 		Calculate maximum power output, DC power input and efficiency.	[L3][CO3][5M]	
and derive its maximum efficiency. [L2][CO3][10M] 5. a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram. b) Write notes on crossover distortion in class B power amplifier. [L1][CO3][5M] 6. Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. [L2][CO3][10M] 7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its bandwidth. [L2][CO3][10M] 8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 K Ω , output capacitance of 15 pF and internal resistance of next stage is 20 k Ω . The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2 Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth of the circuit. [L3][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such	4.	With neat diagram explain the working principle of Push Pull Class B Power Amplifier		
5. a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram. [L2][CO3][5M] b) Write notes on crossover distortion in class B power amplifier. [L1][CO3][5M] 6. Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. [L2][CO3][10M] 7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its bandwidth. [L2][CO3][10M] 8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 K Ω , output capacitance of 15 pF and internal resistance of next stage is 20 k Ω . The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2 Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth of the circuit. [L3][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such		and derive its maximum efficiency.	[L2][CO3][10M]	
 b) Write notes on crossover distortion in class B power amplifier. [L1][CO3][5M] 6. Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. [L2][CO3][10M] 7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its bandwidth. [L2][CO3][10M] 8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 KΩ, output capacitance of 15 pF and internal resistance of next stage is 20 kΩ. The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth. [L2][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 	5.	a) Describe Complementary Symmetry Class B Power Amplifier with neat diagram.	[L2][CO3][5M]	
 6. Describe the operation of a single tuned capacitive coupled amplifier with diagram and derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth. [L2][CO3][10M] 7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its bandwidth. [L2][CO3][10M] 8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 KΩ, output capacitance of 15 pF and internal resistance of next stage is 20 kΩ. The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth. [L2][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 		b) Write notes on crossover distortion in class B power amplifier.	[L1][CO3][5M]	
 expression for its centre frequency, Quality factor, Voltage gain and bandwidth. [L2][CO3][10M] 7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its bandwidth. [L2][CO3][10M] 8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 KΩ, output capacitance of 15 pF and internal resistance of next stage is 20 kΩ. The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth of the circuit. [L3][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 	6.	Describe the operation of a single tuned capacitive coupled amplifier with diagram and de	erive the	
 7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its bandwidth. [L2][CO3][10M] 8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 KΩ, output capacitance of 15 pF and internal resistance of next stage is 20 kΩ. The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth of the circuit. [L3][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 		expression for its centre frequency, Quality factor, Voltage gain and bandwidth.	[L2][CO3][10M]	
 bandwidth. [L2][CO3][10M] 8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 KΩ, output capacitance of 15 pF and internal resistance of next stage is 20 kΩ. The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth of the circuit. [L3][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 	7.	Discuss Double Tuned Amplifier with neat diagram and derive the expression for its		
 8. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 KΩ, output capacitance of 15 pF and internal resistance of next stage is 20 kΩ. The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth of the circuit. [L3][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 		bandwidth.	[L2][CO3][10M]	
 capacitance of 15 pF and internal resistance of next stage is 20 kΩ. The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth of the circuit. [L3][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 	8.	a) A single tuned RF amplifier uses a transistor with an output resistance of 50 K Ω , output	ıt	
 of 47 pF capacitance in parallel with series combination of 1µH inductance and 2Ω resistance. Calculate resonant frequency, effective quality factor and bandwidth of the circuit. [L3][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 		capacitance of 15 pF and internal resistance of next stage is 20 k Ω . The tuned circuit co	onsists	
Calculate resonant frequency, effective quality factor and bandwidth of the circuit. [L3][CO3][5M] b) Explain the effect of cascading single tuned amplifiers on bandwidth. [L2][CO3][5M] 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such		of 47 pF capacitance in parallel with series combination of 1 μ H inductance and 2 Ω rest	istance.	
 b) Explain the effect of cascading single tuned amplifiers on bandwidth. 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 		Calculate resonant frequency, effective quality factor and bandwidth of the circuit.	[L3][CO3][5M]	
 9. a) With circuit diagram, describe the stagger tuning operation. Give necessary graph. [L2][CO3][6M] b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such 		b) Explain the effect of cascading single tuned amplifiers on bandwidth.	[L2][C03][5M]	
b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three such	9.	a) With circuit diagram, describe the stagger tuning operation. Give necessary graph.	[L2][CO3][6M]	
		b) The bandwidth for single tuned amplifier is 20kHz. Calculate the bandwidth if three su	ch	
stages are cascaded. Also calculate the bandwidth for four stages 11.311CO3114ML		stages are cascaded. Also calculate the bandwidth for four stages.	[L3][CO3][4M]	
10 a) Discuss the stability considerations of a tuned amplifier [L2][CO3][5M]	10	a) Discuss the stability considerations of a tuned amplifier	[1.2][CO3][5M]	
b) Compare the different types of tuned amplifiers	10	b) Compare the different types of tuned amplifiers	[1 2][CO3][5M]	

UNIT IV

OPERATIONAL AMPLIFIER

I. Two Mark Questions:	
1. What is operational amplifier?	[L1][CO4][2M]
2. Mention the applications of operational amplifier.	[L1][CO4][2M]
3. List the characteristics of an ideal opamp.	[L1][CO4][2M]
4. Design an opamp with a gain of -10 and input resistance equal to $10k\Omega$.	[L3][CO4][2M]
5. Design an amplifier with a gain of +5 using one opamp.	[L3][CO4][2M]
6. Define CMRR.	[L1][CO4][2M]
7. What are the important features of an instrumentation amplifier?	[L1][CO4][2M]
8. Mention the differences between differentiator and integrator.	[L1][CO4][2M]
9. Draw the output waveform of a differentiator for a sine wave input and square wave input.	[L1][CO4][2M]
10. What is Scmitt trigger?	[L1][CO4][2M]

II. Part – B Questions:

1.a) Draw an inverting amplifier using an opamp and derive the expression for its closed loop voltage gain.

[L2][CO4][5M]

[L2][CO4][5M]

b) In the figure shown, $R_1 = 10k\Omega$, $R_f = 100k\Omega$, $V_i = 1V$. A load of $25k\Omega$ is connected to the output terminal. Calculate (i) i_1 (ii) V_o (iii) i_L and (iv) total current i_o into the output pin. [L3][CO4][5M]

- 2. a) Draw a non inverting amplifier using an opamp and derive the expression for its closed loop voltage gain.
 - b) In the figure shown, $R_1 = 5k\Omega$, $R_f = 20k\Omega$, $V_i = 1V$. A load of $5k\Omega$ is connected to the output terminal. Calculate (i) V_o (ii) A_{CL} (iii) the load current i_L and (iv) the output current i_o indicating proper direction of flow. [L3][CO4][5M]

3.	a) Draw the circuit diagram of a Differential Amplifier and derive the expression for its	
	output voltage. Write about difference and common mode gains.	[L2][C04][6M]
	b) Explain the block diagram of an internal circuit of an operational amplifier.	[L2][CO4][4M]
4.	a) Describe the transfer characteristics of a differential amplifier.	[L2][CO4][6M]
	b) Write notes on Scale changer with circuit diagram.	[L1][CO4][4M]
5.	Obtain the expression for output voltage for an non inverting summing amplifier and	
	Subtractor.	[L2][CO4][10M]
6.	With neat circuit diagram, discuss instrumentation amplifier and also derive its output	
	Voltage.	[L2][CO4][10M]
7.	a) What is sample and hold circuit? Mention the applications of sample and hold circuit.	[L1][CO4][2M]
	b) Draw the circuit diagram of sample and hold circuit and describe its operation with the	help of
	its input and output waveforms.	[L2][CO4][8M]
8.	a) What are the limitations of an ordinary opamp differentiator?	[L1][CO4][2M]
	b) Draw the circuit diagram of ideal and practical differentiator and obtain the expression	
	for their voltage gain.	[L2][CO4][8M]
9.	Draw the circuit diagram of an ideal and practical integrator. Derive the expression for the	eir
	voltage gain.	[L2][CO4][10M]
10	. Explain the Schmitt Trigger with neat circuit diagram, input and output waveforms.	[L2][CO4][10M]

UNIT V

OP-AMP APPLICATIONS

I. Two Mark Questions: 1. Define an electric filter. [L1][CO5][2M] 2. Classify active filters. [L1][CO5][2M] 3. Discuss the disadvantages of passive filters. [L1][CO5][2M] 4. Why are active filters preferred? [L2][CO5][2M] 5. What is Sallen-Key Filter? [L3][CO5][2M] 6. Mention the types of DACs. [L1][CO5][2M] 7. What are disadvantages of weighted resistor DAC? [L1][CO5][2M] 8. Why is an inverted R-2R ladder network DAC better than R-2R ladder DAC? [L2][CO5][2M] 9. List the various A/D conversion techniques. [L1][CO5][2M] 10. Define Settling time of a DAC/ADC. [L1][CO5][2M] **II.** Part – B Questions: 1.a) Draw a First order low pass active filter and derive the transfer function its frequency response. [L2][CO5][5M] b) Design a second order Butterworth low pass filter having upper cutoff frequency of 1KHz. [L3][CO5][5M] 2. Draw a general Sallen-Key Filter and determine its transfer function and from general Sallen Key Filter obtain the transfer function of second order active low pass filter. Draw second order active low pass filter. [L2][CO5][10M] 3. a) With a neat diagram of a second order high pass active filter, derive the expression for its transfer function. [L2][CO5][5M] b) Design a second order Butterworth high pass filter having lower cutoff frequency of 1KHz. [L3][CO5][5M] 4. a) Classify Band pass filter. Mention the important parameters of a band pass filter. Draw a Second order narrow band pass filter and derive its transfer function. [L2][CO5][6M] b) Design a high pass filter with cutoff frequency of 1 KHz and a pass band gain of 2. [L3][CO5][4M] 5. a) Draw a first order wide band pass filter and determine its transfer function. [L2][CO5][5M] b) Design a wide band pass filter having $f_L = 400$ Hz, $F_H = 2$ KHz and pass band gain of 4. [L3][CO5][5M] 6. a) What is a notch filter? How do we get a notch filter from a band pass filter? Draw the circuit schematic of a second order notch filter and obtain its transfer function. [L2][CO5][5M] b) Design a wide band reject filter having $f_H = 400$ Hz and $f_L = 2$ KHz having pass band gain of 2. [L3][CO5][5M] 7. a) Describe the operation of weighted resistor DAC with the help of circuit diagram. [L2][CO5][5M] b) With suitable diagram, discuss R-2R ladder DAC. [L2][CO5][5M] Draw the circuit diagram of inverted R-2R ladder DAC network. Explain its working. 8. List out the advantages over R-2R ladder network. [L2][CO5][10M] With neat circuit diagram and truth table, discuss flash type ADC. [L2][CO5][10M] 9. 10. a) Draw and explain the circuit diagram of successive approximation ADC. [L2][CO5][8M] b) Write the limitations of successive approximation ADC. [L1][CO5][2M] 11. a) Draw the circuit diagram of Dual Slope ADC and explain its working with neat sketches. [L2][CO5][8M] b) What are the disadvantages of Dual Slope ADC? [L1][CO5][2M] 12. Explain the specifications of DAC/ADC specified by the manufacturers. [L2][CO5][10M]

Prepared by: 1. Dr. P.RATNA KAMALA Professor/ECE 2. Mr M. AFSAR ALI Professor/ECE

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : Analog Circuits (18EC0407)

Course & Branch: B.Tech - ECE

Year & Sem: II-B.Tech & II-Sem

Regulation: R18

UNIT –I

SMALL SIGNAL HIGH FREQUENCY TRANSISTOR AMPLIFIER ANALYSIS AND MULTISTAGE AMPLIFIERS

1.	Hybrid-Pi model is also k	nown as	model.		[]
	A) h-parameter	B) Giacoletto	C) Transmission	D) None		
2.	The capacitance observed	between b' and e in a T	Fransistor at High frequ	uencies is	[]
	A) Coupling	B) Input	C) Feedback	D) none		
3.	Transconductance, gm is gi	iven by (GATE 2002)			[]
	A) $V_T / I_c $	B) $ I_c /V_T$	C) $ I_c * V_T$	D) $V_T * I_c $		
4.	Typical value of Transcon	ductance is			[]
	A) 50mA/v	B) 52mA/v	C) 15mA/v	D) 50µA/v		
5.	The Typical value of input	conductance is			[]
	A) 1mhos B) 1mi	lli mhos	C) 4M mhos	D) none		
6.	Typical value of diffusion	capacitance is	•		[]
	A) 1pF	B) 3pF	C) 100pF	D) none		
7.	The Typical value of transi	ition capacitance is	·		[]
	A) 100μF	B) 100pF	C) 3pF	D) none		
8.	Typical value of Output rea	sistance is	•	,	[1
	Α) 80ΚΩ	B) 80MΩ	\overline{C} 4M Ω	D) none	-	-
9.	Typical value of base sprea	ading resistance is	,	,	[1
	Α) 80ΚΩ	Β) 100Ω	C) 4MΩ	D) none	-	-
10	. The base spreading resista	ance is given by	,	,	Γ]
	A) $r_{bb'} = h_{ie} * r_{b'e}$	B) $r_{bb'} = h_{ie} - r_{b'e}$	C) $r_{bb'}=h_{ie}+r_{b'e}$	D) $r_{bb'} = r_{b'e} / h_{re}$	-	-
11	. The input resistance is giv	ven by	,	,	Γ]
	A) $r_{b'e} = h_{fe} * g_m$	B) $r_{b'e} = h_{re} * g_m$	C) $r_{b'e} = h_{fe} / g_m$	D) $r_{b'e} = h_{oe} * g_m$	-	-
12	. The Feedback conductanc	$r_{b'c}$ is given by	ý U	ý U	[]
	A) $r_{h'c} = r_{h'e} / h_{re}$	B) $r_{h'c} = r_{h'e} * h_{re}$	C) $r_{b'c} = r_{b'e} + h_{re}$	D) none	_	-
13	Transconductance g_m is	proport	ional to collector curre	_ / nt.	Γ	1
10	A) Directly	B) Inversely	C) linear	D) None	L	J
14	The input resistance $r_{b'e}$ is	propo	rtional to Temperature.	2)110110	Γ	1
	A) Directly	B) Inversely	C) linear	D) None	L	J
15	$f_{\rm T}$ is the frequency at which	ch short circuit current	gain drops to	. (GATE 2001)	ſ	1
_	A) unity	B) zero	C) infinity	D) None	L	L
16	. The frequency, f_{β} is given	bv	-)		ſ	1
	A) $f_B = h_{fe}/f_T$	B) $f_{B} = h_{fe} * f_{T}$	C) $f_{\beta} = f_T / h_{f_{\beta}}$	D) $f_{\beta} = h_{fe} + f_{T}$	L	L
17	. Unity gain frequency, f_{T} is	s given by	-)-p -1/-ie	_) -pie · -i	ſ	1
- /	A) $f_T = h_{fe} * f_B$	B) $f_T = h_{fe}/f_\beta$	C) $f_T = h_{f_e} + f_\beta$	D) $f_T = h_{fe} - f_{\beta}$	L	J
18	The frequency at which sh	hort circuit current gain	n drops to unity is		ſ	1
10	A) f _B	B) fr	C) f_{α}	D) None	L	J
19	The Emitter Diffusion car	pacitance is given by (GATE 2000)	2)110110	Γ	1
	A) $g_m/2\pi f_T$	B) $g_{\rm m}/2f_{\rm T}$	C) $g_m * 2\pi f_T$	D) $g_{\rm m}/2\pi f_{\rm B}$	L	J
20	. The Emitter Diffusion car	pacitance is directly pro	oportional to	= , Dm,h	Γ]
_0	A) g _m	B) $r_{\rm bb}$	$C) C_c$	D) None	L	L
21	. The type of coupling used	l in all audio small sign	al amplifiers is	, - ·	Γ	1
	A) Transformer coupling	B) Direct Coupling	C) RC Coupling	D) None	L	L

22. The type of coupling used in amplifier where impedance matching required is (GATE2001)	[]
A) Transformer coupling B) Direct Coupling C) RC Coupling D) None	_	-
23. The cascode amplifier is (GATE 2005)	[]
A) CE-CE B) CC-CC C) CE-CB D) Hole 24. The Derlington pair has two stages of (CATE 2005)	г	1
A) CE and CC B) both CE C) both CC D) CE and CB	L]
25 The frequency range of an amplifier between lower and upper 3 dB frequencies is called	ſ	1
A) Beamwidth B) bandwidth C) linewidth D) all of the above	L	1
26 The Darlington pair is called	г	1
A) Super alpha transistor B) Super gamma transistor C) Super beta transistor D) all t	L he aboy	
A) Super appla transistor b) Super gamma transistor c) Super beta transistor b) and c		1
A) increase the overall bandwidth	L]
B) give same bandwidth		
C) decrease the overall handwidth		
D) none		
28 The transformer coupled amplifier gives (CATE 1007)	г	1
A) Maximum voltage gain	L]
A) Maximum vonage gam B) maximum current gam		
C) Impedance matching D) larger bandwidth	г	1
A) High frequency of signals	L]
A) High frequency ac signals B) sinusoidal signals		
C) High level voltages D) changes in dc voltages	г	1
30. The Darlington pair is used for	L]
A) Reducing distortion B) wide and voltage amplification		
C) Impedance matching D) power amplification		
31. If the four stages of a multistage amplifier have individual gains of 5 dB, 10 dB, 15 dB	r	-
and 20 dB then the total gain is	L]
A) 30 dB B) 50 dB C) 150 dB D) 750 dB	-	-
32. The lower cutoff frequency of a multistage amplifier is (IES 2014) $(1/2)$	L	l
A) $f_L / sqrt(2^{1/n} - 1)$ B) $f_L * sqrt(2^{1/n} - 1)$ C) $f_L + sqrt(2^{1/n} - 1)$ D) none	-	-
33. The upper cutoff frequency of a multistage amplifier is]
A) $f_H * sqrt(2^{1/H} - 1)$ B) $f_H / sqrt(2^{1/H} - 1)$ C) $f_H + sqrt(2^{1/H} - 1)$ D) none		
34. If four identical amplifiers are cascaded each having $f_L = 100$ Hz, then the overall lower 3dB		
frequency is	[]
A) 800KHz B) 229.9Hz C) 1MHz D) none		
35. If four identical amplifiers are cascaded each having $f_H = 100$ KHz, then the overall upper 3dE	3	
frequency is	[]
A) 800KHz B) 43.5KHz C) 1MHz D) none		
36. If eight identical amplifiers are cascaded each having $f_H = 200$ KHz, then the overall upper 3d	В	
frequency is	[]
B) 60.17KHz B) 43.5KHz C) 1MHz D) none		
37. If the overall lower cutoff frequency of a two identical amplifier is 600Hz, then the individual	1	
lower cutoff frequency is	[]
A) 100Hz B) 386 Hz C) 1MHz D) none		
38. If the overall upper cutoff frequency of a two identical amplifier is 18KHz, then the individua	ıl	
upper cutoff frequency is	[]
B) 100Hz B) 386 Hz C) 27.97KHz D) none		
39. For a four stage multistage amplifier, if the individual lower cutoff frequency is 15Hz,		
then the overall lower cutoff frequency is	[]
A) 34.48Hz B) 20KHz C) 1KHz D) none		
40. For a four stage multistage amplifier, if the individual upper cutoff frequency is 30KHz,		
then the overall lower cutoff frequency is	[]
B) 13KHz B) 200KHz C) 1MHz D) none		

UNIT –II
FEEDBACK AMPLIFIERS AND OSCILLATORS

1.	The feedback network is usually a two port network.	[]
	A) Active B) Passive C) Bilateral D) none		
2.	The feedback network may contain	[]
	A) Resistor B) Capacitor C) Inductor D) All of the above		
3.	If the output voltage is sampled by connecting the feedback network in shunt across the		
	output, then the sampling is called	[]
	A) Voltage Sampling B) Current Sampling C) Power Sampling D) none		
4.	If the output current is sampled by connecting the feedback network in series with the		
	output, then the sampling is called	[]
	B) Voltage SamplingB) Current SamplingC) Power SamplingD) none		
5.	The basic amplifier used in voltage series feedback amplifier is	[]
	A) Voltage Amplifier B) Current Amplifier C) Transconductance Amplifier D)Transresista	ince amp	olifier
6.	The basic amplifier used in current series feedback amplifier is	[]
	A) Voltage Amplifier B) Current Amplifier C) Transconductance Amplifier D)Transresista	ince amp	olifier
7.	The basic amplifier used in current shunt feedback amplifier is	[]
	A) Voltage Amplifier B) Current Amplifier C) Transconductance Amplifier D)Transresista	nce amp	olifier
8.	The basic amplifier used in voltage shunt feedback amplifier is	[]
	A) Voltage Amplifier B) Current Amplifier C) Transconductance Amplifier D)Transresista	nce amp	olifier
9.	The expression for gain with negative feedback is (IES 2013)	[]
	A) $A_f = A / (1 * \beta)$ B) $A_f = A / (1 - \beta)$ C) $A_f = A / (1 + \beta A)$ D) none		
10.	Gain with feedback is always than gain without feedback. (GATE 1999)	[]
	A) Less B) Greater C) Equal D) none of the above	_	_
11.	Bandwidth with feedback is always than bandwidth without feedback. (GATE 2001)	[]
	A) Less B) Greater C) Equal D) none of the above	_	_
12.	Noise and non linear distortion will by introducing negative feedback. (GATE 1997)	[]
	A) Increases B) no changes C) Decreases D) none		
13.	If the feedback signal is added to the input in series with the applied voltage, then the input	_	_
	resistance	Ĺ]
	A) Increases B) no changes C) Decreases D) none		
14.	If the feedback signal is added to the input in shunt with the applied voltage, then the input	-	-
	resistance	l]
	A) Increases B) no changes C) Decreases D) none	-	-
15.	The negative feedback which samples output voltage, tends to the output resistance.	L]
1.0	A) Increases B) no changes C) Decreases D) none	r	-
16.	The negative feedback which samples output current, tends to the output resistance.	L]
17	A) Increases B) no changes C) Decreases D) none		
1/.	In voltage series feedback amplifier, the input resistance and the output	г	1
	resistance(GATE 2013)]
10	A) increases, Decreases B) Decreases, increases C) increases, increases D) Decreases,	Decreas	ses
10.	registered and the output resistance and the output	г	1
	A) Increases Decreases D) Decreases Increases () Increases Increases D) Decreases	L	
10	A) increases, Decreases B) Decreases, increases C) increases, increases D) Decreases,	Decreas	ses
19.	registence (CATE 2007)	г	1
	A) Increases Decreases B) Decreases Increases C) Increases Increases D) Decreases	L	
20	A) increases, Decreases B) Decreases, increases C) increases, increases D) Decreases,	Decleas	ses
20.	registence (IES 2014)	г	1
	A) Increases Decreases B) Decreases Increases C) Increases Increases D) Decreases	L]
21	A) increases, Decreases B) Decreases, increases C) increases, increases D) Decreases,	Decreas	1
21.	The expression for gain with positive feedback is (A) $A_1 = A_1/(1 + \beta)$ (D) $A_2 = A_2/(1 - \beta)$ (D) none	L]
าา	A) $A_f = A/(1 - p)$ D) $A_f = A/(1 - p)$ C) $A_f = A/(1 - pA)$ D) none For oscillator, the total phase shift around the entire loop is	г	1
ΔΖ,	Δ 360° B) 90° C) 180° D) none	L	1
22	In RC phase shift oscillator each RC network in the feedback network produces		
<i>2</i> 3.	nhase shift	ſ	1
	phase shirt.	L	L

	A) 120° B) 60° C) 360° D) none		
24.	The frequency of oscillation for RC phase shift oscillator using BJT is (GATE 2015)	[]
	A) $1/2\pi RL$ B) $1/2\pi RC$ C) $1/2\pi RC^* sqrt(4K+6)$ D) none	-	_
25.	The frequency of oscillation for Wein bridge oscillator using BJT is (GATE 2000)	[]
	A) $1/2\pi RL$ B) $1/2\pi RC$ C) $1/2\pi RC^* sqrt(4K+6)$ D) none		
26.	$ A\beta = 1$ gives oscillations.	[]
	A) Damped B) Overdamped C) Sustained D) None		
27.	The number of inductors used in Hartley Oscillator is	[]
	A) 2 B) 1 C) 3 D) none of the above		
28.	The number of capacitors used in Colpitts Oscillator is	[]
	A) 2 B) 1 C) 3 D) none of the above		
29.	An oscillator uses	[]
	A) positive feedback B) negative feedback C) no feedback C) None of th	ese	
30.	The essential conditions for sustained oscillation are	[]
	A) $ A\beta = 1$ and angle of $A\beta = 0^{\circ}$ B) $ A\beta < 1$ and angle of $A\beta = 0^{\circ}$		
	C) $ A\beta > 1$ and angle of $A\beta = 0^{\circ}$ D) $ A\beta < 1$ and angle of $A\beta = 180^{\circ}$	-	-
31.	A phase shift oscillator feedback circuit consists of	L]
	A) R and C components B) R and L components		
22	C) L and C components D) R, L and C components	F	-
32.	For a Hartley oscillator, the frequency of oscillation I is (GATE 2001) A) $1/2-1/2$ D) $2-1/2/(1/2)$ D) $1/2-1/2$ D) $1/2-1/2$	L]
22	A) $I / 2\pi LC$ B) $2\pi / V(LC)$ C) $I / 2\pi V[(L_1 + L_2)^*C]$ D) $LC / 2\pi$	г	ч
33.	In a practical oscillators $ Ap $ is A) clickful loss than 1 $p = 1$ $(p) = 1$ $(p) = 1$ (p) clickful crosses than 1	L]
24	A) singuly less than 1 B) 1 C) -1 D) singuly greater than 1 The equilator with highest O factor is a (CATE 1004)	г	1
34.	A) crystal controlled oscillator B) tuned oscillator	L]
	$ \begin{array}{c} C \end{array} \\ \\ \end{array} \\ \begin{array}{c} C \end{array} \\ \end{array} \\ \begin{array}{c} C \end{array} \\ \begin{array}{c} C \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\$		
35	Name the type of material used in Crystal oscillator	Г	1
55.	A) Quartz B) Silicon C) Germanium D) None	L	1
36	Name the Oscillator which offers high stability	ſ	1
50.	A) Wein Bridge B) Crystal C) RC phase shift D) Hartley	L	1
37.	Positive feedback is same as	ſ	1
	A) frequency synthesis B) negative feedback C) degeneration D) regeneration	L	1
38.	The number of capacitor used in Hartley Oscillator is	ſ	1
	A) 2 B) 1 C) 3 D) none of the above	L	
39.	The number of inductor used in Colpitts Oscillator is	[]
	A) 2 B) 1 C) 3 D) none of the above	-	_
40.	Which of the following is a cause of frequency instability in oscillators? (GATE 2002)	[]
	A) temperature variation B) variation in dc power supply		
	C) variation in load D) all of these		

UNIT –III

POWER AMPLIFIERS AND TUNED AMPLIFIERS 1. The position of quiescent point for class A power amplifier is on [] A) Centre of load line B) on X-axis C) Below X-axis D) none 2. The position of quiescent point for class B power amplifier is on ſ 1 A) Centre of load line B) on X-axis C) Below X-axis D) none 3. The position of quiescent point for class C power amplifier is on [] A) Centre of load line B) on X-axis C) Below X-axis D) none 4. The position of quiescent point for class AB power amplifier is on ſ 1 A) Above X-axis but below the centre of load line B) on X-axis C) Below X-axis D) none 5. The operating cycle for class AB power amplifier is [1 **B**) 180⁰ A) 360⁰ C) 180° to 360° D) none 6. A power amplifier in which the transistor is ON for full cycle (360°) of the Signal input is [1 A) Class A B) Class B C) Class C D) Class AB 7. The maximum conversion efficiency for series fed direct coupled class A amplifier is [] A) 78.5% B) 25% C) 100% D) 50%

8.	The maximum conversion efficiency for transformer coupled class A amplifier is A) 78.5% B) 63.33% C) 100% D) 50%	[]
9.	In a Class A amplifier, the current in the output circuit flows for (GATE 2007) A = 100% C) 100% C) 100%	[]
10	A) Less than 90° B) 90° C) 180° D) 360°	г	-
10.	The class A amplifier has	L	ļ
	A) High efficiency and high distortion		
	B) Low efficiency and high distortion		
	C) Low efficiency and low distortion		
11	D) High efficiency and low distortion	r	1
11.	A) Low do now inner, the circuit efficiency can be increased by using	L]
	A) Low ac power input B) transformer coupled load		
10	C) Low rating transistor D) direct coupled load	г	1
12.	The maximum conversion enciency for a class B amplifier is A > 78.50 D) 62.220 C) 1000 D) 5000	L]
12	A) 78.3% B) 05.55% C) 100% D) 50% The main function of the transformer used in the output of a neuron similification is to	г	г
13.	A) increase the system resulting a size of the system of t	L	
	A) increase the output power B) increase the voltage gain D) were af these		
1 /	C) Match the load resistance with the output resistance D) none of these	r	1
14.	A) Les more efficiences	L]
	A) Has more efficiency B) has less distortion D) have a fithered		
1.5	C) is not susceptible to power supply num D) none of these	г	г
15.	The amplifier that suffers mainly from the problem of crossover distortion is(GATE 1999)	L	l
10	A) Class A B) Class B C) Class AB D) Class C	г	г
16.	A power amplifier in which the transistor is ON for less than one half cycle is	L	J
17	A) Class A B) Class B C) Class C D) Class AB	г	ч
1/.	The efficiency of power amplifier is determined by $(D = D) = (D = D)$	L]
10	A) P_{ac} / P_{dc} B) P_{dc} / P_{ac} C) $P_{ac} + P_{dc}$ D) none The maximum dependence of a Cheve D much well emplified in free from (CATE 1002)	r	1
18.	The main advantage of a Class B push pull amplifier is free from (GATE 1993)	L	l
	A) Any circuit imbalances B) unwanted noise		
10	C) Even order harmonic distortion D) dc magnetic saturation effects		
19.	In case of class A amplifiers, the ratio of efficiency of transformer coupled amplifier to	г	1
	efficiency of transformer less amplifier is (GATE 1987)	L	l
20	A) 2.0 B) 1.36 C) 1.0 D) 0,5		
20.	A class A transformer coupled, transistor power amplifier is required to deliver a power	г	г
	Rating of the transistor should not be less than (GATE 1994)	L	l
01	A) 5 W B) 10 W C) 20 W D) 40 W	г	г
21.	A tuned amplifier uses load.	L	l
22	A) Resistive B) capacitive C) LC tank D) inductive	г	г
22.	A tuned amplifier is generally operated in operation.	L	l
22	A) Class A B) Class C C) Class b D) none	г	г
23.	The voltage gain of a tuned amplifier is at resonant frequency. (GATE 2013)	L	l
0.4	A) Minimum B) Maximum C) half way between minimum and maximum D) non-	e r	г
24.	A resonant circuit contains elements.	L	l
25	A) R and L only B) R and C only C) only C D) L and C	r	,
25.	When either L or C is increased, the resonant frequency of tank circuit	L	J
26	A) Remains the same B) Increases C) Decreases D) none	г	г
26.	The bandwidth of a tuned circuit is $(A = A) = (A = A) $	L	l
07	A) Q/f_r B) Lf_r/CR C) f_r/Q D) CR/f_r	г	-
27.	The impedance Z_r of an LC parallel circuit at resonance is (GATE 2014)	L	l
20	A) L/CR B) CR/L C) LR/C D) R/LC	г	-
28.	The Q factor of a response circuit is $(2 + 1) = (2 + 1$	L	J
20	A) $R / (2\pi I_r)$ B) $2\pi I_r L / R$ C) $2\pi I_r C / R$ D) $R / (2\pi I_r C)$	г	-
29.	If high degree of selectivity is desired, then double tuned circuit should have coupling.	L]
20	A) Loose B) 11gnt C) critical D) none		
30.	The bandwidth of an n-stage tuned amplifier, with each stage having a bandwidth	г	ч
	OI B is given by (GATE 1993) A) $P_{1}(1/2)$ (C) $P_{2}(1/2)$ (C) $P_{2}(1/2)$ (C) $P_{3}(1/2)$ (C) $P_{3}($	L]
	A) B / n B) $B / n^{1/2}$ C) $B(sqrt(2^{1/n} - 1))$ D) $B / (sqrt(2^{1/n} - 1))$		

31	1. Double tuned circuits are used in stages of radio receiver.	[]
	A) IF B) Audio C) Output D) none		
32	2. At series or parallel resonance, the circuit power factor is	[]
	A) 0 B) 5 C) 1 D) 8		
33.	3. A double tuned amplifier provides (IES 2012)	[]
	A) larger 3 dB bandwidth and flatter top		
	B) Lesser 3 dB bandwidth and flatter top		
	C) Larger 3 dB bandwidth and narrow top		
~ (D) Lesser 3 dB bandwidth and narrow top	F	-
34	4. The bandwidth of a cascading single tuned amplifier]
25	A) Increases B) decreases C) maintains zero	D) all of above	-
35.	5. A stagger tuned amplifier has the resonant frequency of two tuned circuits sep	arated by]
	A) Bandwidth of each stage B) reconcert frequency of one stage		
	C) Zero frequency of one stage		
	D) helf the handwidth of each stage		
36	6 The handwidth of single tuned amplifier is 20kHz. If three such stages are cas	caded then the	
50	the bandwidth of cascaded stage is		1
	A) 20 MHz B) 10 196 KHz C) 1 MHz D) none	L]
37	7 The handwidth of single tuned amplifier is 20kHz. If four such stages are case	aded then the	
57	the bandwidth of cascaded stage is	lace then the	1
	A) 20 MHz B) 8.7 KHz C) 1 MHz D) none	L	L
38	8. The technique used to eliminate oscillations in a tuned amplifier is]	1
	A) stabilization B) regulation C) Linearization D) neu	tralization	
39	9. The bandwidth of a tuned circuit is (GATE 2014)]]
	A) Q/f_r B) Lf_r/CR C) f_r/Q D) CR	/ f _r	
40	0. A tuned circuit has a coil inductance of 120µH and capacitance of 211pF, ther	the	
	resonant frequency is	[]
	A) 1 MHz B) 1 KHz C) 10 KHz D) non	e	
	UNIT IV		
1	OPERATIONAL AMPLIFIER	г	1
1.	A) Infinity P) zero C) unity D) none	L]
2	A) infinity B) zero C) unity D) none An ideal onemp has input impedance of	Г	1
Ζ.	A) Infinity B) zero C) unity D) none	L	Ţ
3	An ideal onamp has output impedance of	Г	1
5.	A) Infinity B) zero C) unity D) none	L	Ţ
4	An ideal opamp has bandwidth of]	1
	A) Infinity B) zero C) unity D) none	L	L
5.	An ideal opamp has zero offset $V_0 = 0$ when V_1 and V_2 equal to]	1
	A) Infinity B) zero C) unity D) none	L	-
6.	. The closed loop gain of an inverting opamp is (GATE 2005)	[]
	A) $-R_1/R_f$ B) $-R_f$ C) $-R_f/R_1$ D) $1 + (R_f/R_1)$		
7.	. The closed loop gain of a non inverting opamp is	[]
	A) $-R_1 / R_f$ B) $-R_f$ C) $-R_f / R_1$ D) $1 + (R_f / R_1)$		
8.	. The op-amp voltage follower circuit is also known as	[]
	A) Unity gain amplifier B) inverter C) summer D) non	e	
9.	. For a non inverting opamp, if $R_f = 40k\Omega$ and $R_1 = 10 k\Omega$, then closed loop gai	n is []
10	A) 10 B) 4 C) 30 D) none	r	-
10	U. The common mode signal voltage V_{CM} is defined as	L	
11	A) $v_1 + v_2$ B) $v_1 - v_2$ C) $(v_1 + v_2)/2$ D) none 1 The CMDD is given by (CATE 2001)	r	г
11.	1. The UVIKK is given by (GATE 2001) (A) $A_{\rm C} / A_{\rm D} = B A_{\rm D} / A_{\rm C} - C A_{\rm D} + A_{\rm C} = D a_{\rm D}$	L	J
12	A) AC / AD D) AD / AC C) $AD + AC$ D) none 2 The relative sensitivity of an onemp to a difference signal as compared to a co	mmon mode	
14	Signal is called		1
		L	1

A) Common Mode Rejection Ratio	B) Collector Mode Rejection Ratio	
C) Difference Mode Rejection Ratio	D) none	
13. For better opamp, the CMRR should be]	· 1
A) Zero B) high C) neg	ative D) none	
14 The first two stages of commercial opamp is]	· 1
A) Differential amplifier B) Buffer and	level translator C) Output Stage)) none
15 An ideal onamp is an ideal (CATE 2004)	[[[[[] [] [] [] [] [] [] [] [] [] [] []	
A) Voltage controlled voltage course	D) Voltage controlled current course	.]
A) Voltage controlled voltage source	D) Current controlled current source	
C) Current controlled voltage source	D) Current controlled current source	
16. The important feature of an instrumentation am	plifter is	
A) High gain accuracy B) high CMR	R	
C) High gain stability D) all of the a	bove	
17. For large CMRR, A _{CM} should be	[]
A) High B) unity C) zero D)nor	e	
18. For large CMRR, A _{DM} should be	[]
A) High B) negative C) zero	D) none	
19. If the input is a sine wave, the inverting amplific	er (output) will produce phase shift.	1
A) 360° B) 0° C) 90° D) 180		
20 If input is a sine wave, the non inverting amplif	er (output) will produce phase shift [· 1
A) 360° B) 0° C) 90° D) 180		. 1
21 The voltage gain of a voltage follower is	, r	· 1
21. The voltage gain of a voltage follower is (A) Unity $\mathbf{D} < 1$ (C) > 1 (D) your	lahla l	.]
A) Unity $\mathbf{D} < \mathbf{I}$ $\mathbf{C} > \mathbf{I}$ \mathbf{D} var 22. The singular high semales on input signal and h	alde en ite leet eenerled velve vetil the input	
22. The circuit which samples an input signal and h	olds on its last sampled value until the input	
is sampled again is called		
A) Integrator B) Instrumentation Amplifier	C) Sample and Hold Circuit D) none	
23. If input to a differentiator is a sine wave signal,	then the output is []
A) Triangular B) rectangular C) cos	ine D) none	
24. If input to a differentiator is a square wave signate	al, then the output is []
A) Spike B) rectangular C) cos	ine D) none	
25. If input to a integrator is a sine wave signal, the	n the output is (GATE 2012)	· 1
A) Triangular B) rectangular C) cos	ine D) none	. 1
26 If input to a integrator is a step voltage then the		· 1
A) Ramp function B) rectangular	C) cosine D) none	. 1
27 If input to a integrator is a square wave, then the	c) cosine D) none	· 1
A) Down function D) rectangular	C) triangular D) none	.]
A) Kamp function B) rectangular	C) triangular D) none	· 1
28. which of the following is not applicable to an C	ip Amp: [.]
A) linear device B) active device C) d	c coupled D) none of these	
29. The success of op amp is due to which of the fo	llowing operation?	
A) open loop B) negative feedback	C) positive feedback D) none of these	e
30. Of the following gains, which is of most significant significa	cance in an Opamp operation? []
$A) A_V \qquad B) A_I \qquad C) A_P$	D) all of these	
31. Which of the following is applicable in a negati	ve feedback opamp? []
A) lower input impedance	B) higher output impedance	
C) decreased in closed loop gain	D) all of these	
32. To obtain a positive gain in a non inverting op a	mp, what should be the phase relationship	
between the input and output voltage signals?		1
A) 180° out of phase B) in phase C) in r	base quadrature D) any phase	
33 Which of the following is an advantage of a neg	ative feedback loop in an opamp?	· 1
A) very high input impedance	B) low output operation	.]
(c) stable systems signal	D) all of these	
C) stable output signal 24. Which of the following held for a sufficient following	D) all OI lilese	· 1
54. which of the following hold for a voltage follow	ver circuit / [.]
A) $v_i = v_o$ B) input impedance $= A_v R_i$	C) $A_{VC} = 0 dB$ D) all of these	. –
35. In an inverting opamp, if $R_f = R_1$, $A_{CL} = -1$, the	n the circuit is called as	.]
A) Scale changer B) Schmitt Trigger	C) Integrator D) none	

36.	The most commonly used amplifier in sample and hold circuit is (GATE 2000) A) A unity gain inverting amplifier B) a unity gain non inverting amplifier	[]
	C) an inverting amplifier with a gain of 10 D) an inverting amplifier with a gain of 100		
37.	Scmitt Trigger is also known as	[]
38	A) Integrator B) Differentiator C) Regenerative comparator D) none of these Schmitt Trigger exhibits a phenomenon called as	Г	1
50.	A) Hystoresis B) phase detection C) amplitude detection D) none of these	L	L
20	The output of Schmitt trigger is	г	1
39.	A) square waveform B) triangular waveform C) sine waveform D) cosine waveform	L	1
40	A Scmitt Trigger is comparator with feedback (GATE 2013)	ſ	1
10.	A) Negative B) positive C) zero D) none of these	L	1
	Try reguire b) positive c) zero b) none of these		
	UNIT V		
	OP-AMP APPLICATIONS		
1	A frequency selective electric circuit that passes electric signals of specified hand of frequence	ries	
1.	and attenuates the signals of frequencies outside the hand is called as	ſ	1
	A) Integrator B) Differentiator C) Electric Filter D) none of these	L	1
\mathbf{r}	A) Integrator B) Differentiator C) Electric Filter D) none of these	г	1
Ζ.	A first order filter consists of RC filtwork.	L]
2	A) Two B) Single C) Four D) none	г	г
3.	In active first order low pass filter, the frequency range from 0 to f _h is called	L]
	A) Pass band B) Stop band C) no band D) none	-	-
4.	The gain of the first order low pass filter (GATE 2014)		J
	A) Increases at the rate 20dB/decade B) Increases at the rate 40dB/decade		
	C) Decreases at the rate 20dB/decade D) Decreases at the rate 40dB/decade		
5.	The roll off rate of a second order active filter is (GATE 2015)	[]
	A) -20 dB/decade B) -40 dB/decade C) -60dB/decade D) none of these		
6.	If the flattest pass band occurs for damping coefficient of 1.414, then this is called a	[]
	A) Butterworth Filter B) Chebyshev Filter C) Bessel Filter D) none of these		
7.	A heavily damped filter is	Γ	1
	A) Butterworth Filter B) Chebyshev Filter C) Bessel Filter D) none of these	L	1
8.	The more lightly doped filter is	Г	1
0.	A) Butterworth Filter B) Chebyshev Filter C) Bessel Filter D) none of these	L	L
9	A general second order filter is called as	г	1
۶.	A) Sallen-Key Filter B) Notch Filter C) Bessel Filter D) none of these	L	1
10	The quality factor for a narrow hand pass filter is (IFS 2013)	г	1
10.	A) $O < 10$ B) $O > 10$ C) $O = 0$ D) none of these	L]
11	A) $Q < 10$ B) $Q > 10$ C) $Q = 0$ D) none of these The quality factor for a wide hand mass filter is	г	1
11.	The quality factor for a wide band pass filter is	L]
10	A) $Q < 10$ B) $Q > 10$ C) $Q = 0$ D) none of these A $(1 + 1)$ (B) $Q > 10$ C) $Q = 0$ D) none of these	г	г
12.	A wide band pass filter can be formed by cascading(BSNL J10 2002)	L]
10	A) I wo high pass filters B) I wo low pass filters C) one HPF and one LPF D) non	e	
13.	If the HPF and LPF are of the first order, then the band pass filter (BPF) will have a	F	
	Roll off rate of (GATE 2003)	L]
	A) -20 dB/decade B) -40 dB/decade C) -60dB/decade D) none of these		
14.	The filter which is used for the rejection of a single frequency, such as 50Hz power line		
	frequency hum is called as	[]
	A) Low pass filter B) high pass filter D) band pass filter D) narrow band reject filter		
15.	The filter obtained by subtracting the band pass filter output from its input is called as	[]
	A) Low pass filter B) high pass filter D) band pass filter D) notch filter		
16.	The quality factor for a wide band reject filter is	[1
	A) $O < 10$ B) $O > 10$ C) $O = 0$ D) none of these	F	-
17	The filter that has two stop bands is	[1
±1.	A) Band-nass Filter B) Low pass filter C) High pass filter D) Band-reject filter	L	L
18	Which filter performs exactly the opposite to the hand-pass filter?	ſ	1
10.	A) Rand-reject filter B) Rand-ston filter C) Rand alimination filter D) All of the shows	L	1
10	The largest resistor is	r	1
17.	A) 64 B) 128 C) 8 D) none	L	1
	D = D = D = D = D = D = D = D = D = D =		

20.	Wide range of resistors are required in type DAC.	[]
	A) Weighted resistor DAC B) R-2R ladder DAC C) Inverted R-2R Ladder DAC D) no	one	-
21.	In R-2R ladder type DAC only values of resistors are required. (BSNL JTO 2002)	[]
	A) 4 B) 2 C) 8 D) none		
22.	The current flowing in the resistors changes as the input data changes is the drawback in		
	type DAC.	[]
	A) Weighted resistor DAC B) R-2R ladder DAC C) Inverted R-2R Ladder DAC D) Both (A) and	(B)
23.	The simplest possible ADC is	[]
	A) Flash Type ADC B) Dual Slope ADC C) Successive Approximation ADC D) non	e	
24.	The typical conversion time for Flash Type ADC is	[]
	A) 1000 ns or less B) 100ns or less C) 5000ns or less D) none		
25.	The number of comparators approximately doubles for each added bit in type ADC.	[]
	A) Flash Type ADC B) Dual Slope ADC C) Successive Approximation ADC D) non	e	
26.	In successive approximation converter, an eight bit converter would require		
	Clock pulses to obtain a digital output. (GATE 2012)	[]
	A) 16 B) 8 C) 24 D) none		
27.	The smallest change in voltage which may be produced at the output of the converter is	[]
	A) Resolution B) Linearity C) Accuracy D) none of these		
28.	An 8-bit DAC is said to have bit resolution.	[]
	A) 16 B) 8 C) 24 D) none		
29.	An 8-bit DAC is said to have a resolution of of full scale. (IES 2012)	[]
	A) 1.588 B) 0.0978 C) 0.392 D) none		
30.	The of DAC/ADC is a measure of its accuracy and tells us how close the converte	er	
	output is to its ideal transfer characteristics.	[]
	A) Resolution B) Linearity C) Accuracy D) none of these		
31.	In an ideal DAC, equal increment in the digital input should produce equal increment in the		
	Analog output and the transfer curve should be	[]
	A) Logarithmic B) non linear C) linear D) none of these		
32.	A good converter exhibits a linearity error of less than (GATE 2002)	[]
	A) $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac$		
	A) $\pm -(1/2)$ LSD B) $\pm -(1/4)$ LSB C) $\pm -(1/6)$ LSB D) none		
33.	The maximum deviation between the actual converter output and the ideal converter output $(1/4)$ LSB		
33.	The maximum deviation between the actual converter output and the ideal converter output is called	[]
33.	A) +/- (1/2) LSB B) +/- (1/4) LSB C) +/- (1/3) LSB D) none The maximum deviation between the actual converter output and the ideal converter output is called	[]
33. 34.	The maximum deviation between the actual converter output and the ideal converter output is called	[]
33.34.	A) +/- (1/2) LSB B) +/- (1/4) LSB C) +/- (1/3) LSB D) none The maximum deviation between the actual converter output and the ideal converter output is called	[]]
33.34.35.	A) +/- (1/2) LSB B) +/- (1/4) LSB C) +/- (1/3) LSB D) none The maximum deviation between the actual converter output and the ideal converter output is called] []]]
33.34.35.	A) +/- (1/2) LSB B) +/- (1/4) LSB C) +/- (1/3) LSB D) none The maximum deviation between the actual converter output and the ideal converter output is called] [[]]]
33.34.35.36.	The maximum deviation between the actual converter output and the ideal converter output is called] []]]]
33.34.35.36.27.	The maximum deviation between the actual converter output and the ideal converter output is called	[[[]]]
 33. 34. 35. 36. 37. 	The maximum deviation between the actual converter output and the ideal converter output is called]]]]]]]]]]]]]]]]]]]]]]]
 33. 34. 35. 36. 37. 28 	The maximum deviation between the actual converter output and the ideal converter output is called] []]]]]]]
 33. 34. 35. 36. 37. 38. 	The maximum deviation between the actual converter output and the ideal converter output is called]]]]]]]]]]]]]]]]]]]]]]]
 33. 34. 35. 36. 37. 38. 20 	The maximum deviation between the actual converter output and the ideal converter output is called]]]]]]]]]]]]]]]]]]]]]]]
 33. 34. 35. 36. 37. 38. 39. 	The maximum deviation between the actual converter output and the ideal converter output is called]]]]]]]]]]]
 33. 34. 35. 36. 37. 38. 39. 	The maximum deviation between the actual converter output and the ideal converter output is called]]]]]]]]]]]]]]]]]]]]]]]]
 33. 34. 35. 36. 37. 38. 39. 40 	The maximum deviation between the actual converter output and the ideal converter output is called]]]]]]]]]]]]]]]]]]]]]]]]
 33. 34. 35. 36. 37. 38. 39. 40. 	The maximum deviation between the actual converter output and the ideal converter output is called	[[[[[[]]]]]

Prepared by: 1. Dr. P.RATNA KAMALA Professor/ECE 2. Mr M. AFSAR ALI Professor/ECE